Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(6): 1354-1357, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38490178

RESUMO

Our understanding of sex and gender evolves. We asked scientists about their work and the future of sex and gender research. They discuss, among other things, interdisciplinary collaboration, moving beyond binary conceptualizations, accounting for intersecting factors, reproductive strategies, expanding research on sex-related differences, and sex's dynamic nature.


Assuntos
Pesquisa Biomédica , Identidade de Gênero , Sexo , Feminino , Humanos , Masculino , Caracteres Sexuais
2.
Am J Physiol Heart Circ Physiol ; 326(1): H61-H73, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37889253

RESUMO

In vitro cultures of primary cardiac fibroblasts (CFs), the major extracellular matrix (ECM)-producing cells of the heart, are used to determine molecular mechanisms of cardiac fibrosis. However, the supraphysiologic stiffness of tissue culture polystyrene (TCPS) triggers the conversion of CFs into an activated myofibroblast-like state, and serial passage of the cells results in the induction of replicative senescence. These phenotypic switches confound the interpretation of experimental data obtained with cultured CFs. In an attempt to circumvent TCPS-induced activation and senescence of CFs, we used poly(ethylene glycol) (PEG) hydrogels as cell culture platforms with low and high stiffness formulations to mimic healthy and fibrotic hearts, respectively. Low hydrogel stiffness converted activated CFs into a quiescent state with a reduced abundance of α-smooth muscle actin (α-SMA)-containing stress fibers. Unexpectedly, lower substrate stiffness concomitantly augmented CF senescence, marked by elevated senescence-associated ß-galactosidase (SA-ß-Gal) activity and increased expression of p16 and p21, which are antiproliferative markers of senescence. Using dynamically stiffening hydrogels with phototunable cross-linking capabilities, we demonstrate that premature, substrate-induced CF senescence is partially reversible. RNA-sequencing analysis revealed widespread transcriptional reprogramming of CFs cultured on low-stiffness hydrogels, with a reduction in the expression of profibrotic genes encoding ECM proteins, and an attendant increase in expression of NF-κB-responsive inflammatory genes that typify the senescence-associated secretory phenotype (SASP). Our findings demonstrate that alterations in matrix stiffness profoundly impact CF cell state transitions, and suggest mechanisms by which CFs change phenotype in vivo depending on the stiffness of the myocardial microenvironment in which they reside.NEW & NOTEWORTHY Our findings highlight the advantages and pitfalls associated with culturing cardiac fibroblasts on hydrogels of varying stiffness. The findings also define stiffness-dependent signaling and transcriptional networks in cardiac fibroblasts.


Assuntos
Miocárdio , Miofibroblastos , Fenótipo , Miocárdio/metabolismo , Matriz Extracelular/metabolismo , Hidrogéis/análise , Hidrogéis/metabolismo , Fibroblastos/metabolismo , Senescência Celular , Células Cultivadas
3.
Stem Cell Reports ; 18(12): 2300-2312, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37977142

RESUMO

Human fetal tissue and cells derived from fetal tissue are crucial for biomedical research. Fetal tissues and cells are used to study both normal development and developmental disorders. They are broadly applied in vaccine development and production. Further, research using cells from fetal tissue is instrumental for studying many infectious diseases, including a broad range of viruses. These widespread applications underscore the value of fetal tissue research and reflect an important point: cells derived from fetal tissues have capabilities that cells from other sources do not. In many cases, increased functionality of cells derived from fetal tissues arises from increased proliferative capacity, ability to survive in culture, and developmental potential that is attenuated in adult tissues. This review highlights important, representative applications of fetal tissue for science and medicine.


Assuntos
Pesquisa Fetal , Feto , Adulto , Humanos
5.
Bioeng Transl Med ; 8(1): e10358, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36684107

RESUMO

Patients with aortic valve stenosis (AVS) have sexually dimorphic phenotypes in their valve tissue, where male valvular tissue adopts a calcified phenotype and female tissue becomes more fibrotic. The molecular mechanisms that regulate sex-specific calcification in valvular tissue remain poorly understood. Here, we explored the role of osteopontin (OPN), a pro-fibrotic but anti-calcific bone sialoprotein, in regulating the calcification of female aortic valve tissue. Recognizing that OPN mediates calcification processes, we hypothesized that aortic valvular interstitial cells (VICs) in female tissue have reduced expression of osteogenic markers in the presence of elevated OPN relative to male VICs. Human female valve leaflets displayed reduced and smaller microcalcifications, but increased OPN expression relative to male leaflets. To understand how OPN expression contributes to observed sex dimorphisms in valve tissue, we employed enzymatically degradable hydrogels as a 3D cell culture platform to recapitulate male or female VIC interactions with the extracellular matrix. Using this system, we recapitulated sex differences observed in human tissue, specifically demonstrating that female VICs exposed to calcifying medium have smaller mineral deposits within the hydrogel relative to male VICs. We identified a change in OPN dynamics in female VICs in the presence of calcification stimuli, where OPN deposition localized from the extracellular matrix to perinuclear regions. Additionally, exogenously delivered endothelin-1 to encapsulated VICs increased OPN gene expression in male cells, which resulted in reduced calcification. Collectively, our results suggest that increased OPN in female valve tissue may play a sex-specific role in mitigating mineralization during AVS progression.

6.
Biomater Sci ; 10(22): 6341-6353, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36226463

RESUMO

Aortic valve stenosis (AVS) is a sexually dimorphic cardiovascular disease that is driven by fibrosis and calcification of the aortic valve leaflets. Circulating inflammatory factors present in serum from AVS patients contribute to sex differences in valve fibro-calcification by driving the activation of valvular interstitial cells (VICs) to myofibroblasts and/or osteoblast-like cells. However, the molecular mechanisms by which inflammatory factors contribute to sex-specific valve fibro-calcification remain largely unknown. In this study, we identified inflammatory factors present in serum samples from AVS patients that regulate sex-specific myofibroblast activation and osteoblast-like differentiation. After correlating serum proteomic datasets with clinical and in vitro myofibroblast datasets, we identified annexin A2 and cystatin C as candidate inflammatory factors that correlate with both AVS patient severity and myofibroblast activation measurements in vitro. Validation experiments utilizing hydrogel biomaterials as cell culture platforms that mimic the valve extracellular matrix confirmed that annexin A2 and cystatin C promote sex-specific VIC activation to myofibroblasts via p38 MAPK signaling. Additionally, annexin A2 and cystatin C increase osteoblast-like differentiation primarily in male VICs. Our results implicate serum inflammatory factors as potential AVS biomarkers that also contribute to sexually dimorphic AVS progression by driving VIC myofibroblast activation and/or osteoblast-like differentiation. Collectively, the results herein further our overall understanding as to how biological sex may impact inflammation-driven AVS and may lead to the development of sex-specific drug treatment strategies.


Assuntos
Anexina A2 , Estenose da Valva Aórtica , Calcinose , Humanos , Masculino , Feminino , Miofibroblastos , Valva Aórtica , Cistatina C , Caracteres Sexuais , Proteômica , Células Cultivadas , Osteoblastos
7.
Biomater Sci ; 10(22): 6627, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36281803

RESUMO

Correction for 'Inflammatory serum factors from aortic valve stenosis patients modulate sex differences in valvular myofibroblast activation and osteoblast-like differentiation' by Brandon J. Vogt et al., Biomater. Sci., 2022, https://doi.org/10.1039/d2bm00844k.

8.
Bioeng Transl Med ; 7(3): e10394, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36176599

RESUMO

Aortic valve stenosis (AVS) is a progressive fibrotic disease that is caused by thickening and stiffening of valve leaflets. At the cellular level, quiescent valve interstitial cells (qVICs) activate to myofibroblasts (aVICs) that persist within the valve tissue. Given the persistence of myofibroblasts in AVS, epigenetic mechanisms have been implicated. Here, we studied changes that occur in VICs during myofibroblast activation by using a hydrogel matrix to recapitulate different stiffnesses in the valve leaflet during fibrosis. We first compared the chromatin landscape of qVICs cultured on soft hydrogels and aVICs cultured on stiff hydrogels, representing the native and diseased phenotypes respectively. Using assay for transposase-accessible chromatin sequencing (ATAC-Seq), we found that open chromatin regions in aVICs were enriched for transcription factor binding motifs associated with mechanosensing pathways compared to qVICs. Next, we used RNA-Seq to show that the open chromatin regions in aVICs correlated with pro-fibrotic gene expression, as aVICs expressed higher levels of contractile fiber genes, including myofibroblast markers such as alpha smooth muscle actin (αSMA), compared to qVICs. In contrast, chromatin remodeling genes were downregulated in aVICs compared to qVICs, indicating qVICs may be protected from myofibroblast activation through epigenetic mechanisms. Small molecule inhibition of one of these remodelers, CREB Binding Protein (CREBBP), prevented qVICs from activating to aVICs. Notably, CREBBP is more abundant in valves from healthy patients compared to fibrotic valves. Our findings reveal the role of mechanical regulation in chromatin remodeling during VIC activation and quiescence and highlight one potential therapeutic target for treating AVS.

9.
J Mater Chem B ; 10(37): 7089-7098, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36043366

RESUMO

Biological sex differences are observed at multiple different length scales and across organ systems. Gaps in knowledge remain regarding our understanding of how molecular, cellular, and environmental factors contribute to physiological sex differences. Here, we provide our perspective on how chemical and molecular tools can be leveraged to explore sex differences in biology at the molecular, intracellular, extracellular, tissue, and organ length scales. We provide examples where chemical and molecular tools were used to explore sex differences in the cardiovascular, nervous, immune, and reproductive systems. We also provide a future outlook where chemical and molecular tools can be applied to continue investigating sex differences in biology, with the ultimate goal of addressing inequities in biomedical research and approaches to clinical treatments.


Assuntos
Coração , Caracteres Sexuais , Feminino , Humanos , Masculino
10.
FASEB J ; 36(5): e22306, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385164

RESUMO

As aortic valve stenosis develops, valve tissue becomes stiffer. In response to this change in environmental mechanical stiffness, valvular interstitial cells (VICs) activate into myofibroblasts. We aimed to investigate the role of mechanosensitive calcium channel Transient Receptor Potential Vanilloid type 4 (TRPV4) in stiffness induced myofibroblast activation. We verified TRPV4 functionality in VICs using live calcium imaging during application of small molecule modulators of TRPV4 activity. We designed hydrogel biomaterials that mimic mechanical features of healthy or diseased valve tissue microenvironments, respectively, to investigate the role of TRPV4 in myofibroblast activation and proliferation. Our results show that TRPV4 regulates VIC proliferation in a microenvironment stiffness-independent manner. While there was a trend toward inhibiting myofibroblast activation on soft microenvironments during TRPV4 inhibition, we observed near complete deactivation of myofibroblasts on stiff microenvironments. We further identified Yes-activated protein (YAP) as a downstream target for TRPV4 activity on stiff microenvironments. Mechanosensitive TRPV4 channels regulate VIC myofibroblast activation, whereas proliferation regulation is independent of the microenvironmental stiffness. Collectively, the data suggests differential regulation of stiffness-induced proliferation and myofibroblast activation. Our data further suggest a regulatory role for TRPV4 regarding YAP nuclear localization. TRPV4 is an important regulator for VIC myofibroblast activation, which is linked to the initiation of valve fibrosis. Although more validation studies are necessary, we suggest TRPV4 as a promising pharmaceutical target to slow aortic valve stenosis progression.


Assuntos
Estenose da Valva Aórtica , Calcinose , Miofibroblastos , Animais , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/metabolismo , Calcinose/metabolismo , Proliferação de Células , Células Cultivadas , Hidrogéis , Miofibroblastos/metabolismo , Suínos , Canais de Cátion TRPV/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35181609

RESUMO

Aortic valve stenosis (AVS) patients experience pathogenic valve leaflet stiffening due to excessive extracellular matrix (ECM) remodeling. Numerous microenvironmental cues influence pathogenic expression of ECM remodeling genes in tissue-resident valvular myofibroblasts, and the regulation of complex myofibroblast signaling networks depends on patient-specific extracellular factors. Here, we combined a manually curated myofibroblast signaling network with a data-driven transcription factor network to predict patient-specific myofibroblast gene expression signatures and drug responses. Using transcriptomic data from myofibroblasts cultured with AVS patient sera, we produced a large-scale, logic-gated differential equation model in which 11 biochemical and biomechanical signals were transduced via a network of 334 signaling and transcription reactions to accurately predict the expression of 27 fibrosis-related genes. Correlations were found between personalized model-predicted gene expression and AVS patient echocardiography data, suggesting links between fibrosis-related signaling and patient-specific AVS severity. Further, global network perturbation analyses revealed signaling molecules with the most influence over network-wide activity, including endothelin 1 (ET1), interleukin 6 (IL6), and transforming growth factor ß (TGFß), along with downstream mediators c-Jun N-terminal kinase (JNK), signal transducer and activator of transcription (STAT), and reactive oxygen species (ROS). Lastly, we performed virtual drug screening to identify patient-specific drug responses, which were experimentally validated via fibrotic gene expression measurements in valvular interstitial cells cultured with AVS patient sera and treated with or without bosentan-a clinically approved ET1 receptor inhibitor. In sum, our work advances the ability of computational approaches to provide a mechanistic basis for clinical decisions including patient stratification and personalized drug screening.


Assuntos
Valva Aórtica/metabolismo , Perfilação da Expressão Gênica/métodos , Medicina de Precisão/métodos , Actinas/metabolismo , Valva Aórtica/efeitos dos fármacos , Valva Aórtica/fisiologia , Estenose da Valva Aórtica/metabolismo , Biomarcadores Farmacológicos , Calcinose/metabolismo , Técnicas de Cultura de Células/métodos , Células Cultivadas , Cicatriz/metabolismo , Biologia Computacional/métodos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibrose , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Humanos , Modelos Genéticos , Miofibroblastos/metabolismo , Miofibroblastos/fisiologia , Soro/metabolismo , Transdução de Sinais , Transcriptoma/genética
12.
Circulation ; 145(7): 513-530, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35000411

RESUMO

BACKGROUND: Aortic valve stenosis is a sexually dimorphic disease, with women often presenting with sustained fibrosis and men with more extensive calcification. However, the intracellular molecular mechanisms that drive these clinically important sex differences remain underexplored. METHODS: Hydrogel biomaterials were designed to recapitulate key aspects of the valve tissue microenvironment and to serve as a culture platform for sex-specific valvular interstitial cells (VICs; precursors to profibrotic myofibroblasts). The hydrogel culture system was used to interrogate intracellular pathways involved in sex-dependent VIC-to-myofibroblast activation and deactivation. RNA sequencing was used to define pathways involved in driving sex-dependent activation. Interventions with small molecule inhibitors and siRNA transfections were performed to provide mechanistic insight into sex-specific cellular responses to microenvironmental cues, including matrix stiffness and exogenously delivered biochemical factors. RESULTS: In both healthy porcine and human aortic valves, female leaflets had higher baseline activation of the myofibroblast marker α-smooth muscle actin compared with male leaflets. When isolated and cultured, female porcine and human VICs had higher levels of basal α-smooth muscle actin stress fibers that further increased in response to the hydrogel matrix stiffness, both of which were higher than in male VICs. A transcriptomic analysis of male and female porcine VICs revealed Rho-associated protein kinase signaling as a potential driver of this sex-dependent myofibroblast activation. Furthermore, we found that genes that escape X-chromosome inactivation such as BMX and STS (encoding for Bmx nonreceptor tyrosine kinase and steroid sulfatase, respectively) partially regulate the elevated female myofibroblast activation through Rho-associated protein kinase signaling. This finding was confirmed by treating male and female VICs with endothelin-1 and plasminogen activator inhibitor-1, factors that are secreted by endothelial cells and known to drive myofibroblast activation through Rho-associated protein kinase signaling. CONCLUSIONS: Together, in vivo and in vitro results confirm sex dependencies in myofibroblast activation pathways and implicate genes that escape X-chromosome inactivation in regulating sex differences in myofibroblast activation and subsequent aortic valve stenosis progression. Our results underscore the importance of considering sex as a biological variable to understand the molecular mechanisms of aortic valve stenosis and to help guide sex-based precision therapies.


Assuntos
Valva Aórtica/citologia , Expressão Gênica , Genes Ligados ao Cromossomo X , Miofibroblastos/metabolismo , Inativação do Cromossomo X , Actinas/genética , Actinas/metabolismo , Animais , Estenose da Valva Aórtica/etiologia , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Biomarcadores , Células Cultivadas , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Masculino , Miofibroblastos/efeitos dos fármacos , Fatores Sexuais , Transdução de Sinais , Suínos , Transcriptoma
13.
J Mol Cell Cardiol ; 160: 42-55, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34166708

RESUMO

Nearly all cardiovascular diseases show sexual dimorphisms in prevalence, presentation, and outcomes. Until recently, most clinical trials were carried out in males, and many animal studies either failed to identify the sex of the animals or combined data obtained from males and females. Cellular sex in the heart is relatively understudied and many studies fail to report the sex of the cells used for in vitro experiments. Moreover, in the small number of studies in which sex is reported, most of those studies use male cells. The observation that cells from males and females are inherently different is becoming increasingly clear - either due to acquired differences from hormones and other factors or due to intrinsic differences in genotype (XX or XY). Because of the likely contribution of cellular sex differences in cardiac health and disease, here, we explore differences in mammalian male and female cells in the heart, including the less-studied non-myocyte cell populations. We discuss how the heart's microenvironment impacts male and female cellular phenotypes and vice versa, including how secretory profiles are dependent on cellular sex, and how hormones contribute to sexually dimorphic phenotypes and cellular functions. Intracellular mechanisms that contribute to sex differences, including gene expression and epigenetic remodeling, are also described. Recent single-cell sequencing studies have revealed unexpected sex differences in the composition of cell types in the heart which we discuss. Finally, future recommendations for considering cellular sex differences in the design of bioengineered in vitro disease models of the heart are provided.


Assuntos
Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Coração/fisiopatologia , Miocárdio/citologia , Miocárdio/metabolismo , Animais , Doenças Cardiovasculares/genética , Cromossomos/genética , Matriz Extracelular/metabolismo , Feminino , Genótipo , Hormônios Esteroides Gonadais/metabolismo , Humanos , Masculino , Fatores Sexuais , Transcriptoma/genética
15.
Nat Biomed Eng ; 5(12): 1485-1499, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33875841

RESUMO

Fibrotic disease is caused by the continuous deposition of extracellular matrix by persistently activated fibroblasts (also known as myofibroblasts), even after the resolution of the injury. Using fibroblasts from porcine aortic valves cultured on hydrogels that can be softened via exposure to ultraviolet light, here we show that increased extracellular stiffness activates the fibroblasts, and that cumulative tension on the nuclear membrane and increases in the activity of histone deacetylases transform transiently activated fibroblasts into myofibroblasts displaying condensed chromatin with genome-wide alterations. The condensed structure of the myofibroblasts is associated with cytoskeletal stability, as indicated by the inhibition of chromatin condensation and myofibroblast persistence after detachment of the nucleus from the cytoskeleton via the displacement of endogenous nesprins from the nuclear envelope. We also show that the chromatin structure of myofibroblasts from patients with aortic valve stenosis is more condensed than that of myofibroblasts from healthy donors. Our findings suggest that nuclear mechanosensing drives distinct chromatin signatures in persistently activated fibroblasts.


Assuntos
Montagem e Desmontagem da Cromatina , Fibroblastos , Animais , Diferenciação Celular , Matriz Extracelular , Humanos , Miofibroblastos , Suínos
16.
Nat Rev Mater ; 5(12): 862-864, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101711

RESUMO

In February 2019, we co-founded LatinXinBME to build a diverse and welcoming virtual community of Latinx researchers in biomedical engineering (BME). We leverage digital tools and community mentoring approaches to support our members and to build safe spaces in academia, with the aim to diversify the academic workforce in STEM.

17.
Arterioscler Thromb Vasc Biol ; 40(11): e296-e308, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32938214

RESUMO

OBJECTIVE: Resident valvular interstitial cells (VICs) activate to myofibroblasts during aortic valve stenosis progression, which further promotes fibrosis or even differentiate into osteoblast-like cells that can lead to calcification of valve tissue. Inflammation is a hallmark of aortic valve stenosis, so we aimed to determine proinflammatory cytokines secreted from M1 macrophages that give rise to a transient VIC phenotype that leads to calcification of valve tissue. Approach and Results: We designed hydrogel biomaterials as valve extracellular matrix mimics enabling the culture of VICs in either their quiescent fibroblast or activated myofibroblast phenotype in response to the local matrix stiffness. When VIC fibroblasts and myofibroblasts were treated with conditioned media from THP-1-derived M1 macrophages, we observed robust reduction of αSMA (alpha smooth muscle actin) expression, reduced stress fiber formation, and increased proliferation, suggesting a potent antifibrotic effect. We further identified TNF (tumor necrosis factor)-α and IL (interleukin)-1ß as 2 cytokines in M1 media that cause the observed antifibrotic effect. After 7 days of culture in M1 conditioned media, VICs began differentiating into osteoblast-like cells, as measured by increased expression of RUNX2 (runt-related transcription factor 2) and osteopontin. We also identified and validated IL-6 as a critical mediator of the observed pro-osteogenic effect. CONCLUSIONS: Proinflammatory cytokines in M1 conditioned media inhibit myofibroblast activation in VICs (eg, TNF-α and IL-1ß) and promote their osteogenic differentiation (eg, IL-6). Together, our work suggests inflammatory M1 macrophages may drive a myofibroblast-to-osteogenic intermediate VIC phenotype, which may mediate the switch from fibrosis to calcification during aortic valve stenosis progression.


Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Calcinose/metabolismo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Miofibroblastos/metabolismo , Osteoblastos/metabolismo , Osteogênese , Comunicação Parácrina , Animais , Estenose da Valva Aórtica/patologia , Calcinose/patologia , Proliferação de Células , Matriz Extracelular/metabolismo , Fibrose , Humanos , Masculino , Miofibroblastos/patologia , Osteoblastos/patologia , Fenótipo , Via Secretória , Transdução de Sinais , Sus scrofa , Células THP-1
18.
Adv Funct Mater ; 30(37)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33841061

RESUMO

Micron-sized hydrogels, termed microgels, are emerging as multifunctional platforms that can recapitulate tissue heterogeneity in engineered cell microenvironments. The microgels can function as either individual cell culture units or can be assembled into larger scaffolds. In this manner, individual microgels can be customized for single or multi-cell co-culture applications, or heterogeneous populations can be used as building blocks to create microporous assembled scaffolds that more closely mimic tissue heterogeneities. The inherent versatility of these materials allows user-defined control of the microenvironments, from the order of singly encapsulated cells to entire three-dimensional cell scaffolds. These hydrogel scaffolds are promising for moving towards personalized medicine approaches and recapitulating the multifaceted microenvironments that exist in vivo.

19.
Sci Transl Med ; 11(509)2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511425

RESUMO

The transcatheter aortic valve replacement (TAVR) procedure has emerged as a minimally invasive treatment for patients with aortic valve stenosis (AVS). However, alterations in serum factor composition and biological activity after TAVR remain unknown. Here, we quantified the systemic inflammatory effects of the TAVR procedure and hypothesized that alterations in serum factor composition would modulate valve and cardiac fibrosis. Serum samples were obtained from patients with AVS immediately before their TAVR procedure (pre-TAVR) and about 1 month afterward (post-TAVR). Aptamer-based proteomic profiling revealed alterations in post-TAVR serum composition, and ontological analysis identified inflammatory macrophage factors implicated in myofibroblast activation and deactivation. Hydrogel biomaterials used as valve matrix mimics demonstrated that post-TAVR serum reduced myofibroblast activation of valvular interstitial cells relative to pre-TAVR serum from the same patient. Transcriptomics and curated network analysis revealed a shift in myofibroblast phenotype from pre-TAVR to post-TAVR and identified p38 MAPK signaling as one pathway involved in pre-TAVR-mediated myofibroblast activation. Post-TAVR serum deactivated valve and cardiac myofibroblasts initially exposed to pre-TAVR serum to a quiescent fibroblast phenotype. Our in vitro deactivation data correlated with patient disease severity measured via echocardiography and multimorbidity scores, and correlations were dependent on hydrogel stiffness. Sex differences in cellular responses to male and female sera were also observed and may corroborate clinical observations regarding sex-specific TAVR outcomes. Together, alterations in serum composition after TAVR may lead to an antifibrotic fibroblast phenotype, which suggests earlier interventions may be beneficial for patients with advanced AVS to prevent further disease progression.


Assuntos
Miofibroblastos/patologia , Soro/metabolismo , Substituição da Valva Aórtica Transcateter , Valva Aórtica/efeitos dos fármacos , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Ciclo Celular , Feminino , Humanos , Hidrogéis/farmacologia , Mediadores da Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Miofibroblastos/metabolismo , Fenótipo , Reprodutibilidade dos Testes , Caracteres Sexuais , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
20.
ACS Appl Mater Interfaces ; 11(20): 18671-18680, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31021594

RESUMO

Utilizing polymers in cardiac tissue engineering holds promise for restoring function to the heart following myocardial infarction, which is associated with grave morbidity and mortality. To properly mimic native cardiac tissue, materials must not only support cardiac cell growth but also have inherent conductive properties. Here, we present an injectable reverse thermal gel (RTG)-based cardiac cell scaffold system that is both biocompatible and conductive. Following the synthesis of a highly functionalizable, biomimetic RTG backbone, gold nanoparticles (AuNPs) were chemically conjugated to the backbone to enhance the system's conductivity. The resulting RTG-AuNP hydrogel supported targeted survival of neonatal rat ventricular myocytes (NRVMs) for up to 21 days when cocultured with cardiac fibroblasts, leading to an increase in connexin 43 (Cx43) relative to control cultures (NRVMs cultured on traditional gelatin-coated dishes and RTG hydrogel without AuNPs). This biomimetic and conductive RTG-AuNP hydrogel holds promise for future cardiac tissue engineering applications.


Assuntos
Fibroblastos/patologia , Ouro/química , Hidrogéis/química , Nanopartículas Metálicas/química , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Engenharia Tecidual , Tecidos Suporte/química , Animais , Técnicas de Cocultura , Fibroblastos/metabolismo , Teste de Materiais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...